更多>>精华博文推荐
更多>>人气最旺专家

亚栖

领域:新闻在线

介绍:严格来说文档内容本身不是纯粹的干净,无论是学术论文,还是文档内容本身,即使内容本身没有去抄袭文字本身,但是我们在写作文档内容的过程中,都或多或少、有意无意的引进别人先进思路,先进理念的地方。...

吴荣

领域:新浪中医

介绍:2.从命题角度来看:以景观图、物质循环模式图为背景考查地壳物质循环过程,以景观图、地形地质剖面图为背景考查地质构造与地貌、找水、找矿、交通工程建设的关系,考查外力作用的表现形式。利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新

利来娱乐帐户
本站新公告利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新
z0d | 2018-12-12 | 阅读(977) | 评论(993)
 单调性学习目标重点难点1.结合实例,借助几何直观探索并体会函数的单调性与导数的关系.2.能够利用导数研究函数的单调性,并学会求不超过三次的多项式函数的单调区间.重点:利用导数求函数的单调区间和判断函数的单调性.难点:根据函数的单调性求参数的取值范围.导数与函数的单调性的关系(1)一般地,我们有下面的结论:对于函数y=f(x),如果在某区间上______,那么f(x)为该区间上的________;如果在某区间上______,那么f(x)为该区间上的______.(2)上述结论可以用下图直观表示.预习交流1做一做:在区间(a,b)内,f′(x)>0是f(x)在(a,b)上为单调增函数的__________条件.(填序号)①充分不必要 ②必要不充分 ③充要 ④既不充分又不必要预习交流2做一做:函数f(x)=1+x-sinx在(0,2π)上是__________函数.(填“增”或“减”)预习交流3做一做:函数f(x)=x3+ax-2在区间(1,+∞)上是增函数,则实数a的取值范围是______.在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引(1)f′(x)>0 增函数 f′(x)<0 减函数预习交流1:提示:当f′(x)>0时,f(x)在(a,b)上一定是增函数,当f(x)在(a,b)上单调递增时,不一定有f′(x)>0.如f(x)=x3在区间(-∞,+∞)上单调递增,f′(x)≥0.故填①.预习交流2:提示:∵x∈(0,2π),∴f′(x)=(1+x-sinx)′=1-cosx>0,∴f(x)在(0,2π)上为增函数.故填增.预习交流3:提示:f′(x)=3x2+a,∵f(x)在区间(1,+∞)上是增函数,∴f′(x)=3x2+a在(1,+∞)上恒大于或等于0,即3x2+a≥0,a≥-3x2恒成立,∴a≥-3.一、判断或证明函数的单调性证明函数f(x)=eq\f(sinx,x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减.思路分析:要证f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减,只需证明f′(x)<0在区间eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上恒成立即可.1.讨论下列函数的单调性:(1)y=ax5-1(a>0);(2)y=ax-a-x(a>0,且a≠1).2.证明函数f(x)=ex+e-x在[0,+∞)上是增函数.利用导数判断或证明函数的单调性时,一般是先确定函数定义域,再求导数,然后判断导数在给定区间上的符号,从而确定函数的单调性.如果解析式中含有参数,应进行分类讨论.二、求函数的单调区间求下列函数的单调区间:(1)y=eq\f(1,2)x2-lnx;(2)y=x3-2x2+x;(3)y=eq\f(1,2)x+sinx,x∈(0,π).思路分析:先求函数的定义域,再求f′(x),解不等式f′(x)>0或f′(x)<0,从而得出单调区间.1.函数f(x)=5x2-2x的单调增区间是__________.2.求函数f(x)=3x2-2lnx的单调区间.1.利用导数求函数f(x)的单调区间,实质上是转化为解不等式f′(x)>0或f′(x)<0,不等式的解集就是函数的单调区间.2.利用导数求单调区间时,要特别注意不能忽视函数的定义域,在解不等式f′(x)>0[或f′(x)<0]时,要在函数定义域的前提之下求解.3.如果函数的单调区间不止一个时,要用“和”、“及”等词连接,不能用并集“∪”连接.三、利用函数的单调性求参数的取值范围若函数f(x)=eq\f(1,3)x3-eq\f(1,2)ax2+(a-1)x+1,在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,试求实数a的取值范围.思路分析:先求出f(x)的导数,由f′(x)在给定区间上的符号确定a的取值范围,要注意对a-1是否大于等于1进行分类讨论.1.若函数f(x)=x2-eq\f(a,x)在(1,+∞)上单调递增,则实数a的取值范围是__________.2.已知向量a=(x2,x+1),b=(1-x,t),若函数f(x)=a·b在(-1,1)上是增函数,求t的取值范围.1.已知函数的单调性求参数的范围,这是一种非常重要的题型.在某个区间上,f′(x)>0(或f′(x)<0),f(x)在这个区间上单调递增(递减);但由f(x)在这个区间上单调递增(递减)而仅仅得到f′(x)>0(或f′(x)<0)是不够的,即【阅读全文】
利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新
0de | 2018-12-12 | 阅读(265) | 评论(696)
当天,日本东京都、大阪府、福冈、北海道县等地民众也同时举行集会和游行,抗议日本政府推进边野古地区填海施工。【阅读全文】
zq9 | 2018-12-12 | 阅读(156) | 评论(828)
一、质量安全“十严禁”红线(三)严禁内业资料弄虚作假。【阅读全文】
zld | 2018-12-12 | 阅读(164) | 评论(765)
搞好这次学习教育,必须聚焦学党党规、学习近平总书记系列重要讲话这个主体内容,而且要增强针对性,“学”要带着问题学,“做”要针对问题改。【阅读全文】
ovw | 2018-12-12 | 阅读(450) | 评论(866)
他记述人物很有特点,善于撷取一、二个或几个印象鲜明的生活片断来刻画人物。【阅读全文】
0tu | 2018-12-11 | 阅读(363) | 评论(843)
1.概念:编码区非编码区非编码区启动子与RNA聚合酶结合位点终止子原核基因编码区非编码区非编码区启动子与RNA聚合酶结合位点外显子内含子终止子真核基因3、遗传信息、密码子、反密码子区别:遗传信息位于DNA分子的基因上面 密码子位于mRNA上面 反密码子位于tRNA上面考点四基因表达过程【阅读全文】
dzv | 2018-12-11 | 阅读(852) | 评论(139)
(例如、就收捡购物车篮说看起是一项最简单的劳动岗位,实际上这个岗位的任务也有很多,除收捡购物车篮外,还要替换其它岗位的临时活动、随时监视员工的纪律、观察卖场的各种现象等等。【阅读全文】
8ev | 2018-12-11 | 阅读(575) | 评论(555)
3、活动期间,如遭遇自然灾害、网络攻击或系统故障等不可抗拒原因导致活动暂停举办或导致活动出现问题,阿里巴巴可依相关法律规定主张免责,无需因此承担赔偿或补偿责任。【阅读全文】
利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新
h9m | 2018-12-11 | 阅读(870) | 评论(53)
针对群众普遍关心的司法平、正问题【阅读全文】
kw9 | 2018-12-10 | 阅读(670) | 评论(586)
外公的身子一半干一半湿是因为伞倾斜到我这边,他的身子一半暴露在雨中,被雨淋湿了。【阅读全文】
afi | 2018-12-10 | 阅读(568) | 评论(909)
基于本质安全性原则,设计中确定采用Π型补偿器对管道温差进行补偿,考虑天然气舱高度受限,将Π型补偿进行横向布置。【阅读全文】
dop | 2018-12-10 | 阅读(693) | 评论(706)
慰安妇问题、领土争议问题,都是日本人看韩国不顺眼的由头。【阅读全文】
8vm | 2018-12-10 | 阅读(750) | 评论(619)
常委会每年听取和审议法院、检察院工作报告,并进行工作视察。【阅读全文】
c8x | 2018-12-09 | 阅读(129) | 评论(591)
他拿出事先准备好的纸张,站在会场入口处,请前来参加集会的民众签名反对在边野古建设新基地,同时他也在募集反对修改日本宪法第九条的签名。【阅读全文】
mop | 2018-12-09 | 阅读(624) | 评论(585)
1266年郭守敬被忽必烈重臣张文谦推荐给元世祖忽必烈,之后受命编订新历法1277年郭守敬向政府建议,组织一次全国范围的大规模的天文观测,史称“四海测验”1279年郭守敬奉旨进行“四海测验”,在南海的测量点就在今天中国的黄岩岛1281年新历法完成,元世祖按照“敬授民时”的古语,取名为《授时历》1582年意大利天文学家格里高利提出现行公历,与《授时历》的天文数据基本相同问题:根据上述材料,归纳中国古代科技的特点。【阅读全文】
一周热点
本站互助
共5页

友情链接,当前时间:2018-12-12

w66利来娱乐 利来国际娱乐官方 利来国际娱乐官方 利来国际最给利的老牌 w66利来国际
利来国际w66利来国际w66 利来娱乐国际ag旗舰厅 利来国际网站 www.w66利来国际
w66.利来国际 利来国际家居集团 w66利来娱乐 利来娱乐老牌 利来国际w66备用
w66利来娱乐公司 利来国际最给利的老牌 利来国际旗舰版 利来国际 利来国际W66
五河县| 德江县| 喀什市| 敖汉旗| 霍山县| 清流县| 双城市| 太原市| 家居| 衡阳县| 安多县| 冀州市| 南漳县| 武穴市| 郁南县| 上蔡县| 河南省| 龙南县| 上虞市| 五常市| 芜湖县| 益阳市| 玉溪市| 南木林县| 稻城县| 外汇| 华安县| 安化县| 淮阳县| 长宁区| 巩义市| 张家口市| 绥芬河市| 龙州县| 濮阳县| 惠东县| 阿尔山市| 张家港市| 温泉县| 上虞市| 外汇| http:// http:// http:// http:// http:// http://